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We report on the first find of peltasperms in the Permian of Gondwana.Well-preserved leaf compressions and
reproductive structures of these plants came from the Lower Permian Barakar Formation of Satpura Basin,
central India, where they co-occur with diverse glossopterids. The Indian peltasperm record is evidence of
floristic exchanges between Laurasia and Gondwana in the Early Permian involving a dominant group of
North American–European arboreal vegetation of the time. The phytogeographic differentiation, leaf
micromorphology and stratigraphic occurrence of Permian peltasperms suggest a thermophilic group
appearing in central India during the transition from humid peat forming to seasonally dry redbed
environments. Therefore peltasperms are unlikely invaders to high-latitude cool-temperate zone postulated
for Early Permian Australindia. Instead their Satpura occurrence assigns the Indian subcontinent in the
equatorial zone of mixed Laurasian/Gondwanan floristic assemblages.
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1. Introduction

Gondwana is a mid-XIX century paleogeographic concept much
preceding theWegenarianmobilism, although later incorporated in the
continental drift and plate tectonic theories. Initially it was based on the
supposed floristic unity of southern continents plus India, having
arboreal plants with Glossopteris type leaves as their dominant
vegetation element. At the same time, a broad floristic realm north of
Palaeotethys was covered with peltasperm vegetation spreading from
Arizona to the Urals (Read and Mamay, 1964; Meyen, 1984; DiMichele
et al., 2005).

Peltasperms are an order of Late Paleozoic gymnosperms having
fern-like foliage as in archaic seed ferns fromwhich they descended, but
with ovules borne on peltate cone scales as in the major groups of
modern gymnosperms. The cone scale morphology is critical for
peltasperm classification, being fan-like in the Early Permian represen-
tatives, but polygonal with pendant ovules in the derived forms. Both
leaves and cone scales are thickly cutinized, leaving well-preserved
compressions. The epidermal topography and stomatal structures are
important for recognition of the group. Peltasperms were not hitherto
reported from the Glossopteris realm, allegedly penetrating southern
lands only after the assembly of Pangea.
Separation by sea barriers is commonly considered to be the major
cause of floristic differentiation, whereas the intercontinental floristic
exchanges are attributed to land bridges, convergence of landmasses or
long-distance rafting of tectonic terranes. Potentially thesemechanisms
provide for essential congruence of plate tectonic and paleofloristic
approaches to paleogeographic reconstructions. Plate motions con-
trolled by a systemof spreading ridges, subduction zones and transform
faults are traceable back in time to a pre-drift re-assembly of land
masses and pre-disjunction plant ranges. Yet the geometry of plate
motions is not unequivocally resolved for Gondwanaland, because
regional paleomagnetic evidence varies in regard of pole positions (e.g.
Geuna et al., 2010). Incidentally, peninsular India is the most
controversial part of Gondwana alleged to the virtually unconstrained
displacements between Africa, Australia, Antarctica and the mainland
Asia (e.g. Scotese, 1984; Cleal and Thomas, 1991).

On the other hand, the potentialities of long distance plant dispersal
depend on the growth habits and reproductive biology of plant species
involved infloristic exchanges, aswell as on saturation of recipient plant
communities, and above all on climatic differentiation. Zonal climatic
differentiation is an obligatory, although variously expressed, feature of
terrestrial biosphere, in principle providing a common denominator of
different approaches to paleogeographic reconstructions. Yet in the case
of Gondwana the validity of climatic inference from paleobotanical data
is still a major problem.

It will be shown in the following discussion that the Indian
peltasperm occurrence is relevant to the problems of long distance
dispersal and climatic differentiation, aswell as potential congruence of
plate tectonic landmass reassemblies and phytogeography.
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2. Material and methods

We collected peltasperm remains from New Sethia open cast mine,
Pench Coalfield Satpura Basin (78° 50′ 44″ E: 22° 12′ 49″N) 7 kmeast of
Parasia Town in Chhindwara district of Madhya Pradesh State, central
India (Fig. 1). The Gondwana Series of Satpura Basin comprises the coal-
bearing Barakar Formation and the overlying Motur Formation of
variegated sandy/shaly alternation followed by a thick sandy redbeds
(Fig. 2). The Barakar Formation containsfiveminable coal seamsdivided
by shaly interbeds. Well preserved fossil plants are recovered from a
split in the uppermost coal seam and from a coaly siltstone on top of it.
The assemblage contains diverse glossopterid leaves Glossopteris and
Gangamopteris, as well as Phyllotheca, Pachwarophyllum,Noeggerathiop-
sis, Euryphyllum, Ottokaria, Arberia, Arberiella, and Buriadia, providing
phytostratigraphic correlation with the Karharbari and Lower Barakar
formationsof Giridih, Auranga, Raniganj and Ib-River coalfields (Maithy,
1969; Srivastava, 1977; Singh et al., 1982; Srivastava, 1992). The coal-
bearing deposits have been assigned to the regional Barakar Stage, Early
Permian on the basis of coal characteristics and associated geological
features (Pareek, 1970; Chandra, 1971; Rai and Shukla, 1979; Raja Rao,
1983; Singh and Shukla, 2004). Palynological correlation indicates the
late Early Permian (Artinskian) age of the Barakar Stage (Bharadwaj
et al., 1974; Bharadwaj, 1975; Trivedi and Ambwani, 1977, 1984).

The leaves and their associated cone scales from the roof of the upper
coal seam are preserved as the easily detachable compressions
embedded in the rock matrix. After removing the covering rock with
fine needles, the compressions were photographed under the stereo-
microscope Leica 320. The cuticles were obtained by the nitric acid–
potassium hydroxide treatment and studied with the dissecting
microscope Nikon Eclipse or covered with gold and placed under the
Fig. 1. Peltasperm locality in the Permian of Pe
scanning electron microscope (SEM) EF1 Quanta 200. The SEM
photographs were obtained in the mixed scattered electron–back
scattered regime.

3. Morphology of Satpura peltasperm remains

The peltasperm foliar remains from the Barakar Formation of
Satpura Basin represent the polymorphic digitate or pinnate–digitate
leaf blades more than 15 cm long (none is completely preserved)
showing dichopodial branching of the broadly webbed rachises that
extend as midribs of elongate decurrent pinnules or lobes in the
pinnatifid variants (Fig. 3A). The margins of pinnules are entirely with
microscopic glands. The midribs are distinct, reaching to the apex. The
secondary veins are dense, slender, steeply ascending, upcurved along
the margin, meeting the margin at narrow angle, repeatedly forked,
without anastomoses (Fig. 4).

Similar leaf morphologies occur in the supaioid North American
peltasperms (Supaia anomala: White, 1929; DiMichele et al., 2005) and
occasionally appear as aberrant morphotypes convergently developing
on the basis of pinnate architecture in various groups of northern and
southern gymnosperms, including glossopterids and corystosperms.
The Permian “comioid” leafmorphotypes Comia andAuritifolia allegedly
related topeltasperms are similar in thepinnulesmorphology, but differ
in the pinnate leaf architecture and fasciculate lateral veins (Chaney
et al., 2009).

The leaf blades are amphistomatic with nearly equal stomatal
densities over the thickly and thinly cutinized (upper–lower) surfaces.
The costal/intercostal differentiation is feebly developed, with an
irregular pattern of interlocked flexuous intercostals cells traversed by
a few rows of elongate, more regularly filed costal cells. The stomata are
nch Valley coalfield, Central India (arrow).



Fig. 2. Generalized geological section of Pench Valley Coalfield; asterisk on fossil plant
bed with peltasperm remains.
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scattered, often paired, irregularly orientated, sunken in papillate pits,
incompletely amphicyclic or (the paired) monocyclic, with 4–6,
typically 5 subsidiary cells. In the paired stomata, the subsidiary cells
are contiguous and a few encircling cells are shared, arching around the
pair. Thesubsidiary cells are isometric of polygonal, rhombicor trapezoid
outlines, thickened over their radial walls and fairly conspicuous against
Fig. 3. Peltasperm remains from Pench Valley Coalfield; (A) Digitate supaioid leaf; Gl, an a
the backgroundof pavement cells, forminga somewhat irregularly lobed
corolla around the relatively small stomatal pit — the petal-like
configuration characteristic of peltasperms (Fig. 3B).

Stomatal index was calculated as the ratio of stomatal number (S)
to cell number (E) plus stomatal number (Salisbury, 1927). S=115
per E=1420 were counted for 5 areas of 1 mm2 over the leaf cuticle,
giving SI=7.496±0.43.

The cuticle is ornamented with diverse trichomes, including the
large central papillae on pavement cells, clavate epidermal hairs and
conspicuous multicellular glands that are the most distinctive micro-
morphological feature of the leaves (Fig. 3C, D). The glands are dome-
shaped, cutinized, with a broad basement of about 20 tabloid cells and a
roof of small columnar cells that are often shed at the apex. These
structures are closely comparable with multicellular salt glands of
dicotyledonous angiosperms (monocots have a different type of two-
celled salt glands) of excessively saline habitats (Faraday and Thomson,
1986). In distinction, hydathodes are multicellular water-excreting
glands with stoma-like openings lacking in salt gland.

The seed cones consist of spirally disposed, imbricate fan-shaped
coarsely plicate scales of Autunia–Sandrewia type (DiMichele et al.,
2005) that are heavily cutinized, densely stomatiferous, bearing several
pendant ovules (Fig. 5). The stomata are indiscriminately developed
over the ribs and their dividing grooves, irregularly amphicyclic, with
petal-like subsidiary cells and small deeply sunkenguard cells. Although
the difference in cutinization between subsidiary and ordinary cells is
less conspicuous than in the leaves, the topography and configuration of
stomata and trichomes are identical, unequivocally assigning the leaves
and their associated cones to one and the same plant.
4. Discussion

The Permian phytogeographic provinciality has developed concom-
itantlywithdifferentiation of equable Carboniferous climates, enhanced
by the Pennsylvanian (Bashkirian–Serpukhovian) glaciation. The Euro-
American, Cathaysian, Angarian and Gondwanan floristic realms
maintained their distinctness through thePermianowing to segregation
of their dominant gymnosperm components, the peltasperms, gigan-
topterids, vojnovskyids, and glossopterids.
ssociated Glossopteris leaf; (B) Lower cuticle with stomata. (C, D) Multicellular glands.
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Fig. 4. Peltasperm remains from Pench Valley Coalfield; (A. B) Leaf venation.
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Recent studies using modern molecular techniques revealed the role
of long distance dispersal in the Gondwanan phytogeographic disjunc-
tions (Givnish and Renner, 2004; Heinrichs et al., 2006;Milne, 2006). For
spore plants of interzonal wetland communities like those the Permian
fern–arthrophyte assemblages seem to represent, long distance dispersal
is less of a problem than for seed plants of zonal vegetation. The central
Indian occurrence of peltasperms thus poses a more intriguing paleogeo-
graphic problem than the previously reported evidence of floristic
exchanges involving spore plants (Banerjee et al., 2009). Moreover, on a
consensual plate tectonic–phytogeographic reconstruction (Cleal and
Fig. 5. Peltasperm remains from Pench Valley Coalfield: (A) Cone scale, ribbed upper surface
(D) Stoma, interior view, showing sunken guard cells and the petal-like subsidiary cells, SE
Thomas, 1991; Cuneo, 1996), the Indian peltasperms are assigned to a
climatic zone that does not seem encouraging for their invasion (Fig. 6).

4.1. Peltasperm phytogeography

The North American–European realm is subdivided into the
Cordilleran, Lauroeuropean, and Volga–Uralian provinces, dominated
by the supaioid, callipteroid, and tatarinoid peltasperms, respectively
(Read andMamay, 1964; Krassilov, 1972;Meyen, 1984;DiMichele et al.,
2005). The callipterids with Autunia type cone scales first appeared in
. (B) Upper cuticle with stomata, SEM. (C) Cone scale with seed scars (between arrows).
M.

image of Fig.�4
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Fig. 6. Late Early Permian (Artinskian–Kungurian) paleogeographic map after (Cleal and Thomas, 1991) simplified, showing peltasperm occurrences (asterisks); arrow at new Indian
locality. Af, Africa, Ag, Angarida, An, Antarctica, Au, Australia, Co, Cordilleran province of North America, EU, western–central Europe, La, Laurentian province of North America, NC,
Northern Cathaysia, Su, Sundaland, VG, Volga–Uralian Region.
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the Late Carboniferous of central Europe and becamedominant over the
Early Permian Lauroeuropean landmass (DiMichele et al., 2005). Their
derived forms with strongly peltate Peltaspermum type cone scales are
recorded from the late Early Permian of the Volga–Uralian province
(Naugolnykh and Kerp, 1996) giving rise to the Lepidopteris leaf floras
that persisted over the Permian–Triassic boundary spreading world-
wide with Triassic climate warming.

In the Cordilleran province of southwestern North America,
peltasperms co-occurred with gigantopterids, a phylogenetically allied
group of mainly equatorial distribution. Gigantopterids constituted a
dominant vegetation element of the trans-equatorial Cathaysian realm
divided into northern and southern provinces and involved in floristic
exchanges with Gondwana. However, peltasperms penetrated the
northern Cathaysian land rather late during the end-Permian regression
(Wang, 1997; Huang and Ding, 1998).

Over the eastern border, the Volga–Uralian peltasperms havemixed
with the vojnovskyid gymnosperms (“Siberian cordaites”) of the
temperate Angarian realm extending from northern Asia to Greenland
and Arctic Canada (Wagner et al., 1982; Utting, 1994; LePage et al.,
2003). After closure of Uralian seaways, this boundary still remained
fairly distinct, marked by the mixed occurrences of Lepidopteris and
Phoenicopsis, the dominant leaf genera of European redbed and Siberian
coal measure assemblages. Peltasperms scarcely penetrated the core
area of the Angarian–Siberian realms (the comioids are not here
considered as bona fide peltasperms).

Floristic exchanges between the northern and southern landmasses
are documented for the Permian fossil plant localities of Primorye in the
Russian Far East, New Guinea, Malaysia, Thailand, Kashmir, Tibet, Middle
East, northern Africa and elsewhere over the coasts and insular
landmasses of the Paleotethys (Wagner, 1962; Kon'no, 1963; Zimina,
1967; Broutin, 1977; Asama et al., 1975; El-Khayal et al., 1980; Pant et al.,
1984;Broutinet al., 1995;Rigby, 1996; Li andWu,1996; Singhet al., 2006;
reviewed in Krassilov, 2000). Such mixed floras are interpreted as
fragments of a transitional floristic zone (ecotone) or assigned to tectonic
terranes rafted fromGondwanamainland (Li andWu, 1996). Peltasperms
have been recently reported from the “mixed” Permian floras of Sumatra
(Booi et al., 2009) and Venezuela (Ricardi-Branco, 2008), both belonging
to the Paleotethys realm.

Floristic exchanges have involved in the first place the fern–
arthrophyteassemblagesof supposedLaurasianorigin. Their non-uniform
distribution over the western and eastern Gondwana gave rise to
phytogeographic differentiation of the western and eastern Gondwanan
realms (Maheshwari, 1992; Archangelsky, 1996; Li, 1997) that were
further subdivided into the Main South American, Patagonian, African,
Australoindian and Antarctic provinces (Cuneo, 1996). The glossopterid
phytogeography is insufficiently studied, their regional distinctions in leaf
dimensions and morphological diversity being probably conferred by
climatic differences. The glossopterids shortly survived over the end-
Permian crisis, being eventually substituted by the corystosperms with
Dicroidium-typedichotomous leavesfirst appearing in the LatePermianof
Paleotethys realm (Kerp et al., 2006). The Indian supaioids reported here
represent the first so far documented wave of peltasperm invasion to
Gondwana mainland, followed by Lepidopteris in the Triassic (Zamuner
et al., 1999; Retallack, 2002).
4.2. Peltasperm paleoecology

Both the divergence of related plant taxa (Srivastava and Agnihotri,
2010) and floristic mixing are controlled by climatic differentiation in
the first place. The Permian peltasperm floras are currently interpreted
as tropical–subtropical of seasonally dry “redbed climate” (DiMichele
et al., 2006). Peltasperms rapidly decreased in diversity and abundance
with temperization of climate and vegetation toward the higher
latitudes and through time. The acme of their expansion falls at the
Triassic thermal maximum, but even then they failed to intrude the
temperate Siberian realm (Krassilov and Karasev, 2009).

The Jurassic peltasperms of Pachypteris type are no longer a
dominant group, but are locally abundant over the habitats that are
interpreted as coastal mangrove-like swamps (Harris, 1964). Man-
grove adaptations are not unlikely in the Permo-Triassic peltasperms
as well, although a great variety of life forms is postulated for the
group (DiMichele et al., 2006).

The Indian peltasperm assemblage from the roof of the upper coal
seam has replaced a peat-forming glossopterid–arthrophyte assem-
blage of the coal split down the stratigraphic sequence. The
peltasperm leaves are fairly abundant, outnumbering the regionally
dominant Glossopteris and Gangamopteris. The cuticles are better
preserved in peltasperms than in the associated glossopterid remains.
The depositional environment of chaotically amassed leaf and cone
scale compressions embedded in silty rock matrix indicate rapid
burial in anoxic environment undermassive influx of clastic sediment.
Such an occurrence may suggest a profuse single-species growth over
a flooded peat-bog buried under channel deposits.

The Indian peltasperm leaves display epidermal characters of
edaphic adaptation to a highly mineralized waterlogged habitat, such
as the amphistomatic leaf blades, small sunken stomata, thick cutiniza-
tion and diverse trichomes, in particular themulticellular glands. Similar
salt glands occur inAvicennia,Aegialitis, Limonium and Tamarix and other
angiospermous thermophilic xerohalophytes of mangrove swamps,
coastal salt marshes or inland evaporation basins (Thomson et al., 1969;
Faraday and Thomson, 1986; Drennan et al., 1987).

image of Fig.�6
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In the late Early Permian (Artinskian) time of deglaciation and sea
level rise, coal accumulation extended over the broad longitudinal
belt from Antarctica to Australia, India, Cathaysia and Angarida. Entry
of xerothermic forms in the Permian wetlands of Satpura basin at the
end of peat accumulation signals transition to a drier climate
conveyed by the variegated-redbed sequence of the Motur Formation.
Brackish waterlogged habitats locally appeared over the peat-forming
landscape, providing a vacant ecological niche for invasion of pre-
adapted xerohaline forms.

Climate change was also heralded by the increasingmorphological
diversity of glossopterids under seasonally dry subtropical redbed
climate: 43 morphospecies in a single redbed locality of the Mahanadi
Basin, central India (Chandra and Singh, 1992). In contrast, an
apparently single-species stand of deciduous Glossopteris trees was
reported from Antarctica (Taylor et al., 1992).

The Gondwanaland glossopterids are a heterogeneous group of
gymnosperms that might have included both thermophilic and
temperate components. However, their diversity is higher and the
leaves are larger in the Barakar Formation and stratigraphic equivalents
in India than in the roughly contemporaneous Antarctic and Australian
floras (Retallack, 1980; Taylor et al., 1992; McLoughlin, 1994). The
prevailing leaf size categories in high latitude forests are nanophylls or
microphylls, while Glossopteris leaves from India are mesophylls of
Raunkiaer's (1934) classification, the most common leaf size in tropical
and paratropical forests.

In addition, the fern–arthrophyte component is meagerly repre-
sented in Antarctica in comparisonwith Australia and India (Srivastava,
1992; Banerjee et al., 2009). These distinctions make improbable the
extrapolation of cool-temperate climatic conditions, inferred for
Antarctica, to Australia and India (McLoughlin, 1994; Cuneo, 1996)
that apparently belonged to a different climate zone.

The available phytogeographic and ecological information thus
characterizes peltasperms as a thermophilic group of conservative
climatic preference through about 100 million years, which makes
them the least likely intruders in the cool-temperate “Australoindia”
as it is reconstructed for the late Early Permian (Cleal and Thomas,
1991; Cuneo, 1996). The possibility of peltasperm invasion during an
episodic greenhouse warming (Retallack, 2009) is not confirmed by
the leaf stomatal index that is even higher than previously reported
for the Permian peltasperms (Retallack, 2001; Uhl and Kerp, 2005;
Vording and Kerp, 2008; Krassilov and Karasev, 2009).
5. Conclusion

After being swept by the Permian–Triassic turnover and the spread
of equable climates in the Early Triassic, the salient features of Permian
phytogeography have been recovered, with the dominant lateMesozoic
pentoxylean gymnosperms and later by the proteaceous angiosperms
closely following the ranges of Permian glossopterids over the southern
lands and India. Owing to such a remarkable persistence of phytogeo-
graphic patterns against the ever changing configuration of landmasses,
present still is the key to the past.

India is and was through geological times a crossroad of north–south
floristic exchanges. The Indian recordof peltasperms, adominant groupof
North American–European arboreal vegetation of the time, suggests
persistent occurrence of this landmass in the equatorial–subequatorial
Palaeotethyan zone of mixed floras, extending over the present day
biogeographic regions of Austalasia, Indomalaya and Trans Himalayas to
the Mediterranean. The available phytogeographic and ecological
information characterizes peltasperms as a thermophilic group of
conservative climatic preference through about 100 million years. Their
involvement in floristic exchanges might have been enhanced by the
rapid change fromhumid to seasonally dry climate over the Early–Middle
Permian transition and the ensuing potentialities for thermophilic and
xerohaline forms.
Peltasperm phytogeography and paleoecology make these plants
the least likely intruders in the cool-temperate Australoindia of the
late Early Permian landmass re-assembly (Cleal and Thomas, 1991;
Cuneo, 1996), thus adding paleoclimatic constrains to plate tectonic
reconstructions.
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